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Much of the progress in the fields constituting cognitive 
science has been based upon the use of explicit informa
tion processing models, almost exclusively patterned after 
conventional serial computers. An extension of these ideas 
to massively parallel. connectionist models appean to offer 
a number of advantapa. After a preliminary discussion. 
this paper introduces a general connectionist model and 
considers how it might be used in cognitive science. Amon1 
the issues addressed are: stability and noise-sensitivity, dis
tributed decision·makin1o time and sequence problem,, and 
the representation of complex concepts. 

t. llllrNlledom 

Much orthe progress in the fields constitutin1 cognitive 
science has been based upon the use of concrete infor· 
mation proc:essin1 models (IPM}, almost exclusively 
patterned after conventional sequential computen. 
There are several reasons for tryin1 to extend IPM to 
cases where the computations are carried out by a 
parallel computational enpne with perhaps billions 
of active units. As an introduction, we will attempt 
to motivate the current interest in massively paral
lel models from four difl'erent perspectives: anatomy, 
computational complexity, technolou, and the tole of 
formal languages in science. It is the last of these 
which is of primary concern hen. We will focus upon 
a particular formalism. connectionist models (CM). 
which is based explicidy on an abstraction of our 
current understanding of the information processing 
properties or neurou. 

Animal brains do not compute like a conventional 
computer. Compuatively slow (millisecond) neural 
computin1 elemenu with complex, parallel connec· 
tions form a structure which is dramatically different 
from a high-speed, predominantly serial ma.:hinc. Much 
of current research in the neurosciences is concerned 
with tracin1 out these connections and with discover
ing bow they transfer information. One purpose of this 
paper is to sugest how conncctionist theories of the 
brain can be used to produce stable, detailed models 
of interesting behaviors. The distributed nature of 
information processin1 in the brain is not a new dis
covery. The traditional view (which we shared) is that 

conventional computers and languages were Turing 
universal and could be made to simulate any paral
lelism (or analog values) which might be required. 
Contemporary computer science has sharpened our 
notions or what is "computable" to include bounds on 
time, storage, and other resources. It does not seem 
unreasonable to require that computational models in 
cognitive science be at least plausible in their postu
lated resource requirements. 

The critical resource that is most obvious is time. 
Neurons whose basic computational speed is a few 
milliseconds must be made to account for complex 
behaviors which are carried out in a few hundred milli
seconds (Posner, 1978). This means that enrire complex 
behaviors are carrwd. out in lea than a hundred time 
steps. Current AI and simulation programs require 
millions or time steps. It may appear that the problem 
posed here is inherendy unsolvable and that there is 
an error in our formulation. But recent results in com
putational complexity theory(Ja'Ja', 1980) suggest that 
networks of active computin1 elements can carry out 
at least simple computations in the required time 
ran1e. In subsequent sections we present fast solutions 
to a variety or relevant computing problems. These 
solutions involve usin1 massive numbers of units and 
connections, and we also address the questions of 
limitations on these resources. 

Another recent development is the feasibility of 
building parallel computers. There is currently the 
capability to produce chips with 100,000 gates at a 
reproduction cost of a few cenu each. and- the tech· 
nology to 10 to 1,000,000 gates/chip appears to be in 
hand. This has two important consequences for the 
study or CM. The obvious consequence is that it is 
now feasible to fabricate massively parallel computers, 
althoup no one has yet done so (Fahlman, 1980; Hillis. 
1981 ). The second consequence or this development is 
the renewed interest in the basic propenies of highly 
parallel computation. A major reason why there aren't 
yet any or these CM machines is that we do not yet 
know how to desip, assemble, test, or program such 
engines. An important motivation for the careful study 
of CM is the hope that we will learn more about how 
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to do parallel computing, but we will say no more 
about that in this paper. 

The most important rea-on for a serious concern in 
cognitive science for CM is that they might lead to 
better science. It is obvious that the choice of technical 
language that is used for expressing hypotheses has 
a profound influent«: on the form in which theories 
are formulated and experiments undertaken. Artificial 
intelligence and articulating cognitive sciences have 
made great progress by employing models based on 
conventional digital computen as theories of intel
ligent behavior. But a number of crucial phenomena 
such as associative memory, priming, perceptual ri
valry, and the remarkable recovery ability of animals 
have not yielded to this treatment. A major goal of this 
paper is to lay a foundation for the systematic use of 
massively parallel connectionist models in the cogni
tive sciences, even where these are not yet reducible to 
physiology or silicon. 

Over the past few yean, a number of investiga
ton in different fields have begun to employ highly 
parallel models (idiosyncratically) in their work. The 
general idea has been advocated for animal models by 
Arbib (1979) and for cognitive models by Anderson 
(Andenon et al., 1977) and Ratcliff (1978). Parallel 
search of semantic memory and various .. spreading 
activation .. theories have become common (though 
not quite consistent) parts of information processing 
modeling. In machine perception research, massively 
parallel, cooperative computational theories have be
come a dominant paradigm (Marr & Poggio, 1976; 
Rosenfeld et al., 1976) and many of our examples come 
from our own work in this area (Ballard, 1981; Sabbah, 
1981 ). Scientists looking at performance erron and 
other nonrepeatable behavion have not found conven
tional IPM to be an adequate framework for their 
efforts. Norman (1981) has recently summarized argu
ments from cognitive psychology, and Kinsboume and 
Hicks (1979) have been led to a similar view from a 
different penpective. It appean to us that all of these 
efforts could fit within the CM paradigm outlined here. 

One of the most interesting recent studies employing 
CM techniques is the partial theory of reading devel
oped in (McClelland & Rumelhart, 1981~ They were 
concerned with the word superiority effect and related 
questions in the perception of printed words, and had 
a large body of experimental data to explain. One 
major finding is that the presence of a printed letter in 
a brief display is easier to determine when the letter is 
presented in the context of a word than when it is 
presented alone. The model they developed (cf. Figure 
1) explicitly represents three levels of processing: visual 
features of printed letters, letters, and words. The 

Flpn I A few or the neighbon or the node for the letter ~c'· 
in the lint position in a word., and their interconnections 
(McClelland & Rumelhart. 1981). 

model assumes that there are positive and negative 
( circular tipped) connections from visual features to the 
letten that they can (respectively, cannot) be part of. 
The connections between letten and words can go in 
either direction and embody the constraints of English . 
The model assumes that many units can be simultane
ously active, that units Conn algebraic sums of their 
inputs and output values proponionally. The activity 
of a unit is bounded from above and below, has some 
memory and decays with time. All of these features, 
and several more, are captured in the abstract unit 
described in Section 2 

This idea of simultaneously evaluating many hy
potheses (here words) has been successfully used in 
machine perception for some time (Hanson & Riseman. 
1978). What has occurred to us relatively recently is 
that this is a·natural model of computation for widely 
interconnected networks of active elements like those 
envisioned in connectionist models. The generalization 
of these ideas to the connectionist view of brjlin and 
behavior is that all important encodings in the brain 
are in terms of the relative strengths of synaptic con
nections. The fundamental premise of connectionism 
is that individual neurons do riot transmit large amounts 
of symbolic information. Instead they compute by being 
appropriately conMcted to large numbers of similar 
units. This is in sharp contrast to the conventional 
computer model of intelligence prevalent in computer 
science and cognitive psychology. 

The fundamental distinction between the conven
tional and connectionist computing models can be 
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Fl ... l Connectionism vs. symbolic encoding. • assumes some 
general encoding. - assumes individual connections. 

conveyed by the following example. When one sees 
ari apple and says the phrase "wormy apple," some 
information must be transferred, however indirectly. 
from the visual system to the speech system. Either a 
sequence of special symbols that denote a wormy apple 
is transmitted to the speech system, or there are special 
connections to the speech command area for the words. 
Figure 2 is a graphic presentation of the two alterna
tives. The path on the right described by double-lined 
arrows depicts the situation (as in a computer) where 
the information that a wormy apple has been seen is 
encoded by the visual system and sent as an abstract 
message (perhaps frequency-coded) to a general receiver 
in the speech system which decodes the message and 
initiates the appropriate speech act. Notice that a 
complex message would presumably have to be trans
mitted sequentially on this channel, and that each end 
would have to learn the common code for every new 
concept. No one has yet produced a biologically and 
computationally plausible realization of this conven
tional computer model 

The only alternative that we have been able to 
uncover is described by the path with single-width 
arrows. This suggests that there are (indirect) links 
from the units (cells, columns, centers, or what-have
you) that recognize an apple to some units responsible 
for speaking the word. The connectionist model requires 
only very simple messages (e.g. stimulus strength) to 
cross a channel but puts strong demands on the availa· 
bility of the right connections. Questions concerning 
the learning and reinforcement of connections are 
addressed in Feldman, (198lb). 

For a number of reasons (including redundancy for 
reliability). it is highly unlikely that there is exactly one 
neuron for each concept. but the point of view taken 
here is that the activity of a small number of neurons 
(say 10) encodes a concept like apple. An alternative 
view ( Hinton & Anderson. 1981) is that concepts are 
represented by a "pattern of activity" in a much larger 
set of neurons (say l,000) which also represent many 
other concepts. We have not seen how to carry out a 
program of specific modeling in terms of these ditTuse 
models. One of the major problems with diffuse models 
as a parallel computation scheme is cross-talk among 
concepts. for example, if concepts using units ( 10, 20. 
30 .... ) and (5, 15,25, ... ) were simultaneously activated. 
many other concepts, e.g., (20. 25. 30, 35, ... ) would be 
active as well. In the example of Figure 2, this means 
that diffuse models would be more like the shared 
sequential channel. Although a single concept could 
be transmitted in parallel. complex concepts would 
have to go one at a time. Simultaneously transmitting 
multiple concepts that shared units would cause cross
talk. It is still true in our CM that many related 
units will be trigpred by spreading activation, but the 
representation of each concept is taken to be compact. 

Most cognitive scientists believe that the brain ap
pears to be massively parallel and that such structures 
can compute special functions very well. But massively 
parallel structures do not seem to be usable for general 
purpose computing and there is not nearly as much 
knowled1e of how to construct and analyze such 
models. The common belief (which may well be right) 
is that there are one or more intermediate levels of 
computational organization layered on the neuronal 
structure, and that theories of intelligent behavior 
should be described in tenns of these higher-level 
languages, such as Production Systems. Predicate Cal
culus, or LISP. We have not seen a reduction (inter
preter, if you will) of any higher formalism which has 
plausible resource requirements, and this is a problem 
well worth pursuing. 

Our attempts to develop cognitive scien~e models 
directly in neural terms might fail for ~ne of two 
reasons. It may be that there really is an interpreted 
symbol system in animal brains. In this case we would 
hope that our efforts would break down in a way that 
could shed light on the nature or this symbol system. 
The other possibility is that CM techniques are directly 
applicable but we are unable to figure out how to 
model some important capacity, e.g., planning. Our 
program is to continue the CM attack on problems 
or increasin1 difficulty (and to induce some of you 
to join us) until we encounter one that is intractable 
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in our terms. There are a number of problems that 
are known to be difficult for systems without an inter
preted symbolic representition. including complex con
cepts, learning. and natutal language understanding. 
The current paper is mainly concerned with laying out 
the formalism and showing how it applies in the easy 
cases, but we do address the problem of complex 
concepts in Section 4. We have made some progress 
on the problem of learning in CM systems (Feldman. 
198lb) and are beginning to work seriously on natural 
language proccssina and on higher-level vision. Our 
etTorts on plannina and lona-term memory reorgani
zation have not advanced significantly beyond the 
discursive presentation in (Feldman, 1980). 

We will certainly not get very far in this program 
without developing some systematic methods of at
tacking CM tasks and some building-block circuits 
whose properties we understand. A first step towards 
a systematic development or CM is to define an ab
stract computing unit. Our unit is rather more general 
than previous proposals and is intended to capture the 
current understanding of the information processing 
capabilities of neurons. Some useful special cases of our 
general definition and some properties of very simple 
networks are developed in Section 2. Among the key 
ideas are local memory, non-homogeneous and non
linear functions, and the notions of mutual inhibition 
and stable coalitions. 

A major purpose or the rest of the paper is to 
describe building blocks which we have found useful 
in constructinl CM solutions to various tasks. The 
constructions are intended to be used to make specific 
models but the examples in this paper are only sugges
tive. We present a number of CM solutions to general 
problems arising in intelligent behavior, but we are nor 
suggesting that any of tlwse are MCessarily employed by 
nature. Our notion or an adequate model is one that 
accounts for all of the established relevant findings 
and this is not a task to be undertaken lightly. We 
are developin1 some preliminary sketches (Ballard & 
Sabbah, 1981; Sabbah, 198 l)fora serious model oflow 
and intermediate level vision. As we develop various 
buildin1 blocks and techniques we will also be try
ing to bury some of the contaminated debris or past 
neural modeling efforts. Many of our constructions are 
intended as answers to known hard problems in CM 
computation. Among the issues addressed are: stability 
and noise-sensitivity, distributed decision-making. time 
and sequence problems, and the representation of 
complex concepts. The crucial questions of learning 
and change in CM systems are discussed elsewhere 
(Feldman. 198lb). 

2. ~euron-Like Computina Units 

As part of our effort to develop a generally useful 
framework for connectionist theories. we have devel
oped a standard model of the individual unit. It will 
turn out that a "unit" may be used to model anything 
from a small part of a neuron to the external function
ality of a major subsystem. But the basic notion of 
unit is meant to loosely correspond to an information 
processing model of our current understanding of neu
rons. The particular definitions here were chosen to 
make it easy to specify detailed examples of relatively 
complex behaviors. There is no attempt to be mini
mal or mathematically elegant. The various numerical 
values appearina in the definitions are arbitrary, but 
fixed finite bounds play a crucial role in the develop
ment. The presentation of the definitions will be in 
stages, accompanied by examples. A compact techni
cal specification for reference purposes is included as 
Appendix A. Each unit will be characterized by a small 
number or discrete states plus: 

p-a continuous value in [ -10, 10], called potential 
(accuracy or several digits) 
v-an output valu., inte1ers O ~ v ~ 9 
i-a vector of inpuu i,, ... , i,. 

P-Units 
For some applications, we will be able to use a particu
larly simple kind of unit whose output vis proportional 
to its potential p (rounded) when p > 0 and which has 
only one state. In other words 

P - P + tJ r w.i. 
v - if p > 8 rlwn round (p - 9) else O 

[Os Wt s; I] 
[v = 0 ... 9] 

where {J, 9 are constants and w, are weights on the 
input values. The weights are the sole locus of change 
with experience in the current model. Most often, the 
potential and output of a unit will be encoding its 
confidence, and we will sometimes use this term. The 
" - " notation is borrowed from the assignment state
ment of programming languages. This notation covers 
both continuous and discrete time formulations and 
allows us to talk about some issues without a'ny explicit 
mention or time. Of course, certain other questions will 
inherently involve time and computer simulation of 
any network of units will raise delicate questions of 
discretizing time. 

The restriction that output take on small integer 
values is central to our enterprise. The firing frequen
cies or neurons range from a few to a few hundred 
impulses per second. In the 1/10 second needed for 
basic mental events, there can only be a limited amount 
of information encoded in frequencies. Then ten output 
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values arc an attempt to capture this idea. A more 
accurate rendering of neural events would be to allow 
100 discrete values with npise on transmission (cf. 
Sejnowski, 1977). Transmiss\on time is assumed to be 
negligible; delay units can be added when transit time 
needs to be taken into account. 

The p-unit is somewhat like classical linear thres
hold elements (Minsky & Papert, 1972), but there arc 
several differences. The potential, p, is a crude form 
of memory and is an abstraction of the instanta
neous membrane potential that characterizes neurons; 
it greatly reduces the noise sensitivity of our networks. 
Without local memory in the unit. one must guarantee 
that all the inputs required for a computation appear 
simultaneously at the unit. 

One problem with the definition above of a p-unit is 
that its potential docs not decay in the absence of input. 
This decay is both a physical property of neurons and 
an important computational feature for our highly 
parallel modelsl One computational trick to solve this 
is to have an inhibitory connection from the unit 
back to itself. Informally, we identify the negative 
self feedback with an exponential decay in potential 
which is mathematically equivalent. With this addition, 
p-units can be used for many CM tasks of intermediate 
difficulty. The Interactive Activation models of Mc
Clelland and Rumelhan can be described naturally 
with p-units, and some of our own work (Ballard, 1981) 
and that of othen (Marr & Pogio, 1976) can be done 
with p-units. But there are a number of additional 
features which we have found valuable in more com
plex modeling tasks. 

Disjuncme Firiaa Coadidom .... ConjanctiTe 
ConnectiOIII 
It is both computationally efficient and biologically 
realistic to allow a unit to respond to one of a number 
of alternative conditions. One way to view this is to 
imagine the unit having .. dendrites" each of which 
depicts an alternative enablin1 condition (Fipre 3). 
For example, one could extend the network of Figure 

i, 

i, 

i, 
;,-_.... __ _ 
i,--..r 
i, --'9\,.__ 
i, 

Fi ... 3 Conjunctive connections and disjunctive input sites. 

l to allow for several different type fonts activating 
the same letter node, with the higher connections un
changed. Biologically, the firing or a neuron depends, 
in many cases, on local spatio-temporal summation 
involving only a small part of the neuron's surface. 
So-called dcndritic spikes transmit the activation to 
the rest of the cell. 

In terms of our formalism, this could be described in 
a variety of ways. One of the simplest is to define the 
potential in terms of the maximum of the separate 
computations, e.g., 

p ... p + p Max(i1 + i2 - q,, i 3 + i4 - cp, i, + i6 - i, - <Pl 

where /J is a scale constant as in the p-unit and q, is a 
constant chosen (usually > 10) to suppress noise and 
require the presence of multiple active inputs (Sabbah, 
1981 ). The minus sign associated with i7 corresponds 
to its being an inhibitory input. 

It does not seem unreasonable (given current data. 
Kufflcr & Nicholls, 1976) to model the firing rate of 
some units as the maximum of the rates at its active 
sites. Units whose potential is changed according to 
the maximum of a set of algebraic sums will occur 
frequently in our specific models. One advantage of 
keeping the processing power of our abstract unit close 
to that of a neuron is that it helps inform our counting 
arguments. When we attempt to model a particular 
function (e.g., stereopsis). we expect to require that 
the number of units and connections as well as the 
execution time required by the model arc plausible. 

The max-of-sum unit is the continuous analog of a 
logical OR-of-AND (disjunctive normal form) unit and 
we will sometimes use the latter as an approximate 
version of the former. The OR-of-AND unit corre
sponding to Fisure 3 is: 

p ... p + 2 OR (i1 &i2, i3&i4, i5&i6&(not i1)) 

This formulation stresses the importance that nearby 
spatial connections all be firing before the potential is 
affected. Hence, in the above example, i3 and i4 make 
a conjunctive connection with the unit. The effect of a 
conjunctive connection can always be simulatl:d with 
more units but the number of extra units may" be very 
large. 

Q-Unill and Compound Unill 
Another useful special case arises when one suppresses 
the numerical potential, p, and relics upon a finite-state 
set { q} for modeling. If we also identify each input of i 
with a separate named input signaL we can get classical 
finite automata. A simple example would be a unit that 
could be started or stopped from firing. 
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One could describe the behavior of this unit by a 
table. with rows corresponding to states in { q} and 
columns to possible inputs. e.;, 

i1 (start) i, (stop) 

Firilll Firing Null 

'.'/uU Firing Null 

one would also have to specify an output function, 
giving output values required by the rest of the net
work. e.g., 

v ... if q ... Firing then 6 else 0. 

This could also be added to the table above. An 
equivalent notation would be transition networks with 
states as nodes and inputs and outputs on the arcs. 

In order to build models of interesting behaviors we 
will need to employ many of the same techniques used 
by designers of complex computers and programs. One 
of the most powerful techniques will be encapsulation 
and abstraction of a subnetwork by an individual unit. 
For example, a system that had separate motor abilities 
for turning left and turning right (e.g., fins) could use 
two start-stop units to model a tum-unit, as shown in 
Figure 4. 

Note that the compound unit here has two distinct 
outputs, when basic units have only one (which can 
branch, of course). In general, compound units will 
differ from basic ones only in that they can have several 
distinct outputs. 

The main point of this example is that the tum-unit 
can be described abstractly, independent of the de
tails of how it is built. For example, usina the tabular 
conventions described above, 

lat Ripa v .... o.,.. 
a gauche a gauche adroit v, -1. Yz • 0 

adroit a gauche adroit v, -o. Y1 • 8 

left COUMI 
eft motion 

tum er 
to left 

ri ht COUMI 
right motion 

turner 
to right 

, ..... A Tum Unit. 

where the right-going output being larger than the left 
could mean that we have a right-finned robot. There 
is a great deal more that must be said about the. use 
of states and symbolic input names, about multiple 
simultaneous inputs, etc., but the idea of describing the 
eitternal behavior of a system only in enough detail for 
the task at hand is of great importance. This is one of 
the few ways known of coping with the complexity 
of the magnitude needed for serious modeling of bio
logical functions. It is not strictly necessary that the 
same formalism be used at each level of functional 
abstraction and, in the long run, we may need to 
employ a wide range of models. For example. for 
certain purposes one might like to expand our units in 
terms of compartmental models of neurons like those 
of(PerkeL 1979). The advantage of keeping within the 
same formalism is that we preserve intuition, mathe
matics. and the ability to use existing simulation pro
grams. With sufficient care, we can use the units defined 
above to represent large subsystems without giving up 
the notion that each unit can stand for an abstract 
neuron. The crucial point is that a subsystem must be 
elaborated into its neuron-level units for timing and 
size calculations, but can (hopefully) be described much 
more simply when only its effects on other subsystems 
are of direct concern. 

Units Employi111 p and q 
It will already have occurred to the reader that a 
numerical value, like our p, would be useful for model
ing the amount of turning to the left or right in the 
last example. It appean to be generally true that a 
single numerical value and a small set of discrete states 
combine to provide a powerful yet tractable modeling 
unit. This is one reason that the current definitions 
were chosen. Another reason is that the mixed unit 
seems to be a particularly convenient way of modeling 
the information processing behavior of neurons. as 
generally described. The discrete states enable one to 
model the effects in neurons or polypeptide modula
tors. abnormal chemical environments. fatigue, etc. 
Although these effects are often continuous func;i'ons 
of unit parameters, there are several advantages to 
using discrete states in our models. Scientists and 
laymen alike often give distinct names (e.g .• cool, warm, 
hot) to parameter ranges that they want to treat 
differently. We also can exploit a large literature on 
understanding loosely-coupled systems as finite-state 
machines (Sunshine, 1979). It is also traditional to 
break up a function into separate ranges when it is 
simpler to describe that way. We have already em
ployed all or these uses of discrete states in our detailed 
work (Feldman, l981b; Sabbah, 1981). One example of 

1111111 ........ __________________________________________________ 4 
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a unit employing both p and q non-trivially is the 
following crude neuron model. This model is con
cerned with saturation /lnd assumes that the output 
strength, v, is something like average firing frequency. 
It is not a model of individual action potentials and 
refractory periods. 

We suppose the distinct states of the unit q e 
{ normal. recover}. In normal state the unit behaves like 
a p-unit, but while it is recovering it ignores inputs. The 
following table captures almost all of this behavior. 

normal 
(incomplete) 

recover 

-1 < p < 9 

p ... p+Ii 

normaJ 

p>9 Output Value 

p ... -p/ v ... :ip-8 
recover 

(impossible) v-o 

Here we have the change from one state to the 
other depending on the value of the potential. p, rather 
than on specific inputs. The recovering state is also 
characterized by the potential being set negative. The 
unspecified issue is what determines the duration of the 
recovering state-there are several possibilities. One is 
an explicit dishabituation signal like those in Kandel's 
experiments (Kandel, 1976). Another would be to have 
the unit sum inputs in the recovering state as well. The 
reader might want to conside how to add this to the 
table. 

The third possibility, which we will use frequently, 
is to assume that the potential, p, decays toward zero 
(from both directions) unless explicitly changed. This 
implicit decay p- p0e-a can be modeled by self inhi
bition; the decay constant, k. determines the length of 
the recovery period. 

The general definition of our abstract neural com
puting unit is just a formalization oftbe ideas presented 
above. To the previous notions of p, v, and i we formally 
add 

{ q}-a set of di&crete srata, < 10 

and functions from old to new values of these 

p- f(i,p,q) 
q- g(i,p,q) 
v - h(i,p,q) 

which we assume, for now, to compute continuously. 
The form of the r, g, and h functions will vary, but 
will generally be restricted to conditionals and simple 
functions. There are both biological and computational 
reasons for allowing units to respond (for example) 
logarithmically to their inputs and we have already 
seen important uses of the maximum function. 

The only other notion that we will need is modifiers 
associated with the inputs of a unit. We elaborate the 
input vector i in terms of received values, weights. and 
modifiers: 

'tfj, ii =- ri · w1 · m1 j .. 1, .... n 

where ri is the value received from a predecessor 
[r = 0 ... 9]; w1 is a changeable weight, unsigned 
[O S w1 S l] (accuracy of several digits); and m is a 
synapto-synaptic modifier which is either O or 1. 

The weights are the only thing in the system which 
can change with experience. They are unsigned because 
we do not want a connection to change from excitatory 
to inhibitory. The modifier or gate simplifies many of 
our detailed models. Learning and change will not be 
treated technically in this paper, but the definitions are 
included in the Appendix for completeness (Feldman, 
198lb). 

We conclude this section with some preliminary 
examples of networks of our units, illustrating the key 
idea of mutual (lateral) inhibition (Fig. 5). Mutual 
inhibition is widespread in nature and has been one of 
the basic computational schemes used in modeling. We 
will present two examples of how it works to help aid 
in intuition as well as to illustrate the notation. The 
basic situation is symmetric configurations of p-units 
which mutually inhibit one another. Time is broken 
into discrete intervals for these examples. The examples 
are too simple to be realistic, but do contain ideas 
which we will employ repeatedly. 

Two P-Unia Symmetrically Coaaected 
Suppose 

w, • l, W2 • -.S 
p(t + l) • p(t) + r1 - (.5)r2 

v • round(p)[O ... 9] 

Referring to Figure Sa, suppose the initial input to the 
unit A. l is 6, then 2 per time step, and the initial input 
to 8.1 is S, then 2 per time step. At each time step, each 
unit changes its potential by adding the external value 
(r 1 ) and substracting half the output valu~ of its rival. 
This system will stabilize to the side of the larger of two 
instantaneous inputs. 

Two Symmeaic Coalitions of 2-Units 

W1 • l 
Wz • .S 
w, - -.s 
p(t + l) • p(t) + r1 + . .5(r2 - r3 ) 

v • round(p) 
A. C start at 6; B, D at .5; 
A. B. C, D have no external input for t > l 

• 

• 
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Suppose A, received an input of 6 units, then 2 per time step 
Suppose I, received on input of 5 units, then 2 per time step 

P(A) 

1 6 
2 5.5 
3 5.5 

• 6 
5 6.5 
6 7.5 
7 9.5 
8 Sot 

(a) 

P(A) P(I) 

1 6 5 
2 6.5 4.5 
3 7.5 3.5 

• 9.5 1.5 
Sat 0 

(b) 

Fltwe5 Small Symmetric Networks. 

P(I) 

5 

• 
3.5 
3 
2 
1 
0 
0 

P(C) 

6 
6.5 
7.5 
9.5 
Sot 

P(D) 

5 
4.5 
3.5 
1.5 
0 

The connections for this system are shown in Figure 
Sb. This system converges raster than the previous 
example. The idea here is that units A and C form 
a .. coalition .. with mutually reinforcing connections. 
The competing units are A vs. B and C vs. D. The 
last example is the smallest network depicting what 
we believe to be the basic mode of operation in 
connectionist systems. The faster convergence is not an 
artifact; the positive feedback among members of a 
coalition will generally lead to faster convergence than 
in separate competitions. It is the amount of positive 
feedback rather than just the size of the coalition 
that determines the rate of convergence (Feldman & 
Ballard, 1982i In terms of Figure I, this could repre
sent the behavior of the rival letters A and T in con
junction with the rival words ABLE and TRAP. in the 
absence of other active nodes. 

Competing coalitions of units will be the organizing 
principle behind most of our models. Consider the 
two alternative readinp of the Necker cube shown in 
Figure 6. At each level of visual processing, there are 
mutually contradictory units representing alternative 
possibilities. The dashed lines denote the boundaries 
of coalitions which embody the alternative interpreta· 
tions of the image. A number of interesting phenomena 
(e.g., primin1, perceptual rivalry, filling. subjective 
contour) find natural expression in this formalism. 
We are engaged in an ongoing effort (Ballard, 1981: 
Sabbah. l 98 l) to model as much of visual processing 
as possible within the connec:tionist framework. The 
next section describes in some detail a variety of simple 
networks which we have found to be useful in this 
effort. 

3. Networks of Units 

The main restriction imposed by the connectionist 
paradigm is that no symbolic information is passed 
from unit to unit. This restriction makes it difficult 
to employ standard computational devices like para
meterized functions. In this section. we present connec
tionist solutions to a variety of computational problems. 
The sections address two principal issues. One is: Can 
the networks be connected up in a way that is suffi· 
cient to represent the problem at hand? The other 
is: Given these connections, how can the networks 
exhibit appropriate dynamic behavior, such as making 
a decision at an appropriate time? 

t:si111 a Unit to RtpnMllt a Value 
One key to many or our constructions is the dedication 
of a separate unit to each value of each parameter of 
interest, which we term the unit/value principle. We 
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Fl ... 6 The Necker Cube. 

will show how to compute using unit/value networks 
and present arguments that the number of units re
quired is not unreasonable. In this representation the 
output of a unit may be thought of as a confidence 
measure. Suppose a network of depth units encodes the 
distance of some object from the retina. Then if the 
unit representing depth • 2 saturates, the network is 
expressing confidence that the distance is two units. 
Similarly, the "G-hidden" node in Figure 6 expresses 
confidence in its assertion. There is much neurophysio
logical evidence to suggest unit/value organizations in 
less abstract cortical maps. Examples are edge sensitive 
units (Hubel & Wiesel, 1979) and perceptual color 
units (Zeki, 1980), which are relatively insensitive to 
illumination spectra. Experiments with cortical motor 
control in the monkey and cat (Wurtz & Albano, 1980) 
suggest a unit/value organization. Our hypothesis is 
that the unit/value organizatioQ is widespread, and is 
a fundamental design principle. 

Although many physical neurons do seem to follow 
the unit/value rule and respond according to the reli
ability of a particular configuration, there are also 
other neurons whose output represents the range or 
some parameter, and apparently some units whose 
firing frequency reflects both range and strength infor
mation (Scientific American, 1979). Both of the latter 
types can be accommodated within our definition of a 
unit, but we will employ only unit/value networks in 
the remainder of this paper. 

In the unit/value representation, much computation 
is done by table look-up. As a. simple example, let us 
consider the multiplication of two variables, i.e .. z = ,y. 
In the unit/value formalism there will be units for erery 

value of x and y that is important. Appropriate pairs 
or these will make a conjunctive connection with an
other unit cell representing a specific value for the 
product. Figure 7 shows this for a small set or units 
representing values for x and y. Notice that the confi
dence (expressed as output value) that a particular 
product is an answer can be a linear function of the 
maximum of the sums of the confidences of its two 
inputs. A major problem with function tables (and with 
CM in general) is the potential combinatorial explo
sion in the number of units required for a computation. 
A naive approach would demand N 2 units to represent 
all products of numbers from l to N. The network 
of Figure 7 requires many fewer units because each 
product is represented only once, another advantage 
of conjunctive connections. We could use even fewer 
units by exploiting positional notation and replacing 
each output connection with a conjunction of outupts 
from units representing multiples of l. 10, 100. etc. 
The question of efficient ways of building connection 
networks is treated in detail in Section 4 tcf. also 
Hinton, 1981a: 198lb). 

'1odifien and Mappiap 
The idea of function tables (Fig. 7) can be oxtended 
through the use of variable mappings. ln our defini
tion of the computational unit, we included a binary 
modifier. m. as an option on every connection. As the 
definition specifies, if the modifier associated with a 
connection is zero. the value v sent along that connec
tion is ignored. Thus the modifier denotes inhibition. 
or blocking. There is considerable evidence in nature 
for synapses on synapses (Kandel, 1976) and the modi
fiers add greatly to the computational simplicity or our 
networks. Let us start with an initial informal example 
of the use of modifiers and mappings. Suppose that one 
has a model of grass as green except in California where 

• 

• 

• 
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Fiaun I Gross is Green connection modified by California. 

it is brown (golden), as shown in Figure 8. Here we can 
see that grass and green are potential members of a 
coalition (can reinforce one another) except when the 
link is blocked. This use is similar to the cancella
tion link of (Fahlman, 1979) and gives a crude idea of 
how context can effect perception in our models. Note 
that in Figure 8 we are using a shorthand notation. 
A modifier touctiing a double-ended arrow actually 
blocks two connections. (Sometimes we also omit the 
arrowheads when connection is double-ended.) 

Mappings can also be used to select among a number 
of possible values. Consider the example of the relation 
between depth, physical size, and retinal size of a circle. 
(For now, assume that the circle is centered on and 
orthogonal to the line of sight, that the focus is fixed. 
etc.) Then there is a fixed relation between the size of 
retinal image and the size of the physical circle for any 
given depth. That is, each depth specifies a mapping 
from retinal to physical size (see Fig. 9). Here we sup
pose the scales for depth and the two sizes are chosen 
so that unit depth means the same numerical size. IC we 
knew the depth or the object (by touch, context. or 
magic) we would know its physical size. The network 
above allows retinal size 2 to reinforce physical size 2 
when depth ... l but inhibits this connection for all 
other depths. Similarly, at depth 3, we should interpret 
retinal size 2 as physical size 8, and inhibit other 
interpretations. Several remarks are in order. First. 
notice that this network implements a function phys = 
f(ret, dep) that maps rrom retinal size and depth to 
physical size, providing an example of how to replace 
functions with parameters by mappinp. For the simple 
case of looking at one object perpendicular to the line 
of sight, there will be one consistent coalition of units 
which will be stable. The work does something more. 
and this is crucial to our enterprise; the network can 
represent the consistency relation R amon1 the three 
quantities: depth, retinal size, and physical size. ft 
embodies not only the function f, but its two in-

Fi1ure 9 Depth Network usin1 Modifiers. 

' .• ,..,... i 

.... ( --=--::::::::~-=:::::::::s:::~ 
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\ 

Fiaun 10 Depth Network usin1 Conjunctive Connecuons. 

verse functions as well (dep • f1 (ret, phys). and ret = 
f2(phys, dep)). (The network as shown does not include 
the links for f1 and f2, but these are similar to those 
for f.) Most of Section S is devoted to laying out 
networks that embody theories of particulac · visual 
consistency relations. 

The idea of modifiers is, in a sense, complementary 
to that of conjunctive connections. For example. the 
network ol Figure 9 could be transformed into the 
following network (Fig. 10). In this network the vari
ables for physical size, depth, and retinal size are all 
given equal weight. For example, physical size = 4 and 
depth = l make a conjunctive connection with retinal 
size = 4. Each of the value units in a competing row 
could be connected to all of its competitors by inhibi
tory links and this would tend to make the network 
activate only one value in each category. The general 
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issue of rivalry and coalitions will be discussed in the 
next two sub-sections; 

When should a rellftion be implemented with modi
fiers and when should it be implemented with conjunc
tive connections? A simple, nonrigorous answer to this 
question can be obtained by examining the size of two 
sets of units: ( l) the number of units that would have 
to be inhibited by modifiers; and (2) the number of 
units that would have to be reinforced with conjunc· 
tive connections. If (l) is larger than (2), then one 
should choose modifiers; otherwise choose conjunc
tive connections. Sometimes the choice is obvious: to 
implement the brown Californian grass example of 
Figure 8 with conjunctive connections, one would have 
to reinforce all units representing places that had green 
grass! Clearly in this case it is easier to handle the 
exception with modifiers. On the other hand, the depth 
relation R(phy, dep, ret) is more \:heaply implemented 
with conjunctive connections. Since our modifiers are 
strictly binary, conjunctive connections have the addi
tional advantage of continuous modulation. 

To see how the conjunctive connection strategy 
works in general, suppose a constraint relation to be 
satisfied involves a variable x. e.g.. f(x. y, z. w) = 0. For 
a particular value of x. there will be triples of values of 
y, z. and w that satisfy the relation f. Each of these 
triples should make a conjunctive connection with the 
unit representing the x-value. There could also be 
3-input conjunctions at each value of y, z. w. Each 
of these four different kinds of conjunctive connec
tions corresponds to an interpretation of the relation 
f(x,y.z.w) • 0 as a function. i.e .. x == f1(y,z.w), y = 
f2(x.z.w), z =-f3(x,y,w), or w =-f4 (x,y,z). Of course. 
these functions need not be single-valued. This network 
connection pattern could be extended to more than 
four variables, but high numbers of variables would 
tend to increase its sensitivity to noisy inputs. Hinton 
has suggested a special notation for the situation where 
a network exactly captures a consistency relation. The 

Fl ... 11 Notation Cor consistency relations. 

mutually consistent values are all shown to be centrally • 
linked (Fig. l l). This notation provides an elegant 
way of presenting the interactions among networks, 
but must be used with care. Writing down a triangle 
diagram does not insure that the underlying mappings 
can be made consistent or computationally well
behaved. 

Winner-Take-All Networks and Regulated ~etworks 
A very general problem that arises in any distributed 
computing situation is how to get the entire system 
to make a decision (or perform a coherent action. 
etc.). Biologically necessary examples of this behavior 
abound; ranging from turning left or right. through 
fight-or-flight responses, to interpretations of ambig
uous words and images. Decision-making is a partic
ularly important issue for the current model because 
of its restrictions on information flow and because 
of the almost linear nature of the p-units used in 
many of our specific examples. Decision-making intro
duces the notions of stable states and convergence of 
networks. 

One way to deal with the issue of coherent decisions 
in a connectionist framework is to introduce winner
cake-all (WT A) networks. which have the property that 
only the unit with the highest potential (among a set. 
of contenders) will have output above zero after some 
setting time (Fig. 12). There are a number of ways 
to construct WTA networks from the units described 
above. For our purposes it is enough to consider one 
example of a WT A network which will operate in one 
time step for a set of contenders each of whom can read 
the potential of all of the others. Each unit in the 
network computes its new potential according to the 
rule: 

p - if p > max(i1,.l) then p elx 0. 

That is, each unit sets itself to zero if it knows of a 
higher inpuL This is fast and simple. but probably a 
little too complex to be plausible as the behavior of a 
single neuron. There is a standard trick· ( apparently 
widely used by nature) to convert this' into a more 
plausible scheme. Replace each unit above with two 

Flame 11 Winncr·Takc·All. Eadl unit stops iC it ,ees a higher • 
value. 
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units; one computes the maximum of the competitor's 
inputs and inhibits the other. The circuit above can be 
strengthened by adding a ,teverse inhibitory link. or 
one could use a modifier on the output, etc. Obviously 
one could have a WTA layer that got intputs from 
some set of competitors and settled to a winner wben 
triggered to do so by some downstream network. This 
is an exact analogy of strobing an output buffer in a 
conventional computer. 

One problem with previous neural modeling at
tempts is that the circuits proposed were often 
unnaturally delicate (unstable). Small changes in param
eter values would cause the networks to oscillate or 
converge to incorrect answers. We will have to be 
careful not to fall into this trap, but would like to avoid 
detailed analysis of each particular model for delicacy 
in this paper. What appears to be required are some 
building blocks and combination rules that preserve 
the desired properties. For example. the WT A sub
networks of the last example will not oscillate in the 
absence of oscillating inputs. This is also true of any 
symmetric mutually inhibitory subnetwork. This is 
intuitively clear and could be proven rigorously under 
a variety or assumptions (d. Grossberg, 1980). If every 
unit receives inhibition proportional to the activity 
(potential) of each of its rivals, the instantaneous leader 
will receive less inhibition and thus not lose its lead 
unless the inputs change significantly. 

Another useful principle is the employment oflower
bound and upper-bound cells to keep the total activity 
of a network within bounds (Fig. 13). Suppose that we 
add two extra units, LB and UB, to a network which 
has coordinated output. The LB cell compares the total 
(sum) activity of the units or the network with a lower 
bound and sends positive activation unifonnly to all 
members if the sum is too low. The UB cell inhibits all 
units equally if the sum of activity is too high. Notice 
that LB and UB can be parameters set from outside 
the nework. U oder a wide range or conditions (but not 
all), the LB-UB augmented network can be designed 
to preserve order relationships among the outputs vi 

Fipn lJ Rc1ulatcd Network. If sum ex~ UB all units get 
uniform inhibition. 

of the original network while keeping the sum between 
LB and UB. 

We will often assume that LB-UB pairs are used to 
keep the sum of outputs from a nework within a given 
range. This same mechanism also goes far towards 
eliminating the twin perils of uniform saturation and 
uniform silence which can easily arise in mutual inhibi
tion networks. Thus we will often be able to reason 
about the computation of a network assuming that it 
stays active and bounded. 

Stable Coalitiom 
For a massively parallel system to actually make a 
decision (or do something). there will have to be states 
in which some activity strongly dominates. Such stable, 
connected, high confidence units are termed stable 
coalitions. A stable coalition is our architecturally
biascd tenn for the psychological notions or percept. 
action, etc. We have shown some simple instances of 
stable coalitions, in Figure Sb and the WT A network. 
In the depth networks or Figures 9 and 10, a stable 
coalition would be three units representing consistent 
values or retinal size, depth, and physical size. But the 
general idea is that a very large complex subsystem 
must stabilize, e.g., to a fixed interpretation of visual 
input, as in Figure 1. The way we believe this to happen 
is through mutually reinforcing coalitions which dom
inate all rival activity when the decision is required. 
The simplest case of this is Figure Sb, where the two 
units A and 8 fonn a coalition which suppresses C and 
0. Formally, a coalition will be called stable when the 
output of all its members is non-decreasing. Notice that 
a coalition is not a particular anatomical structure. but 
an instantaneously mutually reinforcing set of units. in 
the spirit of Hebb's cell assemblies (Jusczyk & Klein, 
1980). 

What can we say about the conditions under which 
coalitions will become and remain stable? We will 
begin informally with an almost trivial condition. 
Consider a set or units { a, b, ... } which we wish to 
examine as a possible coalition, n:. For now, we assume 
that the units in n: are all p-units and arc in !he non
saturated range and have no decay. Thus for each u 
ID It, 

p(u) - p(u) + Exe - lnh, 

where Exe is the weighted sum of excitatory inputs and 
Inh is the weighted sum of inhibitory inputs. N'ow 
suppose that Excln, the excitation from the coalition 
n: only, were greater than INH, the largest possible 
inhibition receivable by u, for each unit u in n:, i.e .. 

1SC) 'vu en:; Excln: > INH 
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Then it follows that 

'r/ U E 1t;p(u) - p(U) + <> wrere 6 > 0. 

That is. the potential of every unit in the coalition will 
increase. This is not only true instantaneously, but 
remains true as long as nothing external changes (we 
are ignoring state change. saturation, and decay). This 
is because Excjn continues to increase as the potential 
of the members of 1t increases. Taking saturation into 
account adds no new problems; if all of the units in 1t 

are saturated. the change, J, will be zero, but the coali
tion will remain stable. 

The condition that the excitation from other coalition 
members alone, Exel 1t, be greater than any possible 
inhibition INH for each unit may appear to be too 
strong to be useful. It is certainly true that coalitions 
can be stable without condition (SC) being met. The 
condition (SC) is useful for model building because it 
may be relatively easy to establish. Notice that INH 
is directly computable from the description of the 
unit; it is the largest negative weighted sum possible. If 
inhibition in our networks is mutual, the upper-bound 
possible after a fixed time t, INHt, will depend on the 
current value of potential in each unit u. The simplest 
case of this is when two units are "deadly rivals" -
each gets all its inhibition from the other. In such cases, 
it may well be feasible to show that after some time t. 
the stable coalition condition will hold (in the absence 
of decay, fatigue. and changes external to the network). 
Often. it will be enough to show that the coalition has 
a stable "frontier," the set of units with outputs to some 
system under investigation. 

There are a number of interesting properties of the 
stable coalition principle. First notice that it does not 
prohibit multiple stable coalitions nor single coalitions 
which contain units which mutually inhibit one another 
(although excessive mutual inhibition is precluded). If 
the units in the coalition had non-zero decay, the coali
tion excitation Excln would have to exceed both INH 
and decay for the coalition to be stable. We suppose 
that a stable coalition yields control when its input 
elements change (fatigue and explicit resets are also 
feasible). To model coalitions with changeable inputs. 
we add boundary elements. which also had external 
''Input" and thus whose condition for being part of a 
stable coalition, 1t, would be: 

Excjir +Input> INH. 

This kind of unit could disrupt the coalition if its 
Input went too low. The mathematical analysis of 
CM networks and stable coalitions continues to be a 
problem of interest. We have achieved some under
standing of special cases (Feldman & Ballard. 19821 

and these results have been useful in designing C\1 too • ,_: 
complex to analyze in closed form. 

4. Conserving Connections 

It is currently estimated that there are about 101 L 

neurons and 1015 connections in the human brain and 
that each neuron receives intput from about l 03 -104 

other neurons. These numbers are quite large, but not 
so large as to present no problems for connectionist 
theories. It is also important to remember that neurons 
are not switching devices; the same signal is propa-
gated along all of the outgoing branches. For example, 
suppose some model called for a separate. dedicated 
path between all possible pairs of units in two layers in 
size N. It is easy to show that this requires N 2 inter
mediate sites. This means. for example, that there are 
not enough neurons in the brain to provide such a 
cross-bar switch for substructures of a million ele-
ments each. Similarly, there are not enough neurons 
to provide one to represent each complex object at 
every position. orientation. and scale of visual space. 
Although the development of connectionist models is 
in its perinatal period, we have been able to accumulate 
a number of ideas on how some of the required com
putations can be carried out without excessive resource • 
requirements. Five of the most important of these 
are described below: (l) functional decomposition: 
(2) limited precision computation; (3) coarse and coarse-
line coding; (4) tuning; and (5) spatial coherence. 

Functional Decompositioll 
When the number of variables in the function becomes 
large, the fan-in or number of input connections could 
become unrealistically large. For example. with the 
function t = f(u. v, w, x, y.z) implemented with 100 
values oft. when each of its arguments can have 100 
distinct values. would require an average number of 
inputs per unit of 1012/ 102, or 1010. However. there are 
simple ways of trading units for connections. One is to 
replicate the number of units with each v.alue. This is 
a good solution when the inputs can be partitioned in 
some natural way as in the vision examples in the next 
section. A more powerful technique is to use inter
mediate units when the computation can be decom
posed in some way. For example, if f(u. v, w. :<. y. z) = 
g(u. v)o h(w, x. y,z), where o is some composition. then 
separate networks of value units for f(g. h). g(u. v,. and 
h(w,x,y,z) can be used. The outputs from the g and 
h units can be combined in conjunctive connections 
according to the composition operator o in a third 
network representing f. An example is the case of. 
word recognition. Letter-feature units would have to 
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Fi ... 14 Modified Multiplication Table using Less Units. 

connect to vastly more word units without the imposi
tion of the intermediate level of letter units. The letter 
units limit the ways letter-feature units can appear in 
a word. 

Limited Precision Computation 
In the multiplication example z == xy, the number of z 
units required is proportional to N:rN, even when 
redundant value units are eliminated. and in general 
the number of units could grow exponentially with 
the number of arguments. However, there are several 
refinements which can drastically reduce the number 
of required units. One way to do this is to fix the 
number of units at the precision required for the com
putation. Figure 14 shows the network of Figure 7 
modified when less computational accuracy is required. 

This is the same principle that is incorporated in 
integer calculations in a sequential computer: compu
tations are rounded to within the machine's accuracy. 
Accuracy is related to the number of bits and the 
number representation. The main difference is that 
since the sequential computer is general purpose, the 
number representations are conservative, involving 
large number of bits. The neural units need only 
represent sufficient accuracy for the problem at hand. 
This will generally vary from network to network. 
and may involve very inhomogeneous. special purpose 
number representations. 

Coarse and Coarse-Fine Codins 
Coarse coding is a general technical device for reducing 
the number of units needed to represent a range of 
values with some fixed precision, due to Hinton ( 1980). 
As Figure l 5a suggests. one can represent a more pre
cise value as the simultaneous activation of several 
(here 3) overlapping coarse-valued units. In general. D 

! : 

Q, b 

Fiaure l!a Coarse coding eumple. In a two-dimensional mea· 
surement space. the presence of a measurement can be encoded 
by making a single unit in the line resolution space have a high 
.:onfidence value. The same measurement can be encoded by 
making overlapping coarse units in three distinct coarse arrays 
have high confidence values. 

simultaneous activations of coarse cells of diameter D 
precise units suffice. For a parameter space of dimen
sion k, a range of F values can be captured by only 
Ft:o•-1 units rather than F1 in the naive method. The 
coarse coding trick and the related coarse-fine trick to 
be described next both depend on the input at any 
given time being sparse relative to the set of all values 
expressible by the network. 

The coarse-fine coding technique is useful when the 
space of values to be represented has a natural struc
ture which can be exploited. Suppose a set of units 
represents a vector parameter v which can be thought 
of as partitioned into two components (r. s). Suppose 
further that the number of units required to represent 
the subspace r is N, and that required to represent s is 
N,. Then the number of units required to represent v 
is N,N,. It is easy to construct examples in vision where 
the product N,N, is too close to the upper bound of 
1011 units to be realistic. Consider the case of trihedral 
(v) vertices, an important visual cue. Three angles and 
two position coordinates are necessary to uniquely 
define every possible trihedral vertex. (Two angles 
define the types of vertex (arrow, y-joint); the third 
specifies the rotation of the joint in space.) If we use 5 
degree angle sensitivity and 105 spatial sample points. 
the number of units is given by N, ~ 3.6 x I 0 5 and 
N, = 10' so that N,N, ~ 3.6 x 1010

. How can we 
achieve the required representation accuracy _with less 
units? 

In many instances, one can take advantage of the 
fact that the actual occurrence of parameters is sparse. 
In terms of trihedral vertices, one assumes that in an 
image, such vertices will rarely occur in tight spatial 
clusters. (If they do, they cannot be resolved as in· 
dividuals simultaneously.) Given that simultaneous 
proximal values of parameters are unlikely, they can 
be represented accurately for other computations. 
without excessive cosL 

The solution is to decompose the space v into two 
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Fi ... 1511 Coarse angle-fine position and coarse position-fine 
angle units combine to yield prease values or all five parame1en. 

subspaces, r and s, each with unilaterally reduced 
resolution. 

Instead of N,N, units. we represent v with two spaces. 
one with N,. N, units where N,. « N, and another with 
N,N,. units where N,. « N,. 

To illustrate this technique with the example of 
trihedral vertices we choose 

N,. • O.OlN, and N,. - 0.0lN,. 

Thus the dimensions of the two sets of units arc: 

N,. N, • 3.6 x 101 

and 

N,N,. - 3.6 x 101
• 

The choices result in one set of units which accurately 
represent the angle measurements and lire for a specific 
trihedral vertex anywhere :n a fairly broad visual 
region. and another set of units which fire only if 
a general trihedral vertex is present at the precise 
position. The coarse-rme technique can be viewed as 
replacing the square coarse-valued covering in Figure 
l Sa with rectangular (multi-dimensional) coverings. 
like those shown in Figure 16. In terms of our value 
units, the coarse-fine representation of trihedral ver
tices is shown in Figure lSb. 

If the trihedral angle enters. into another relation. say 
R(v, :x~ where both its angle and position arc required 
accurately, one conjunctively connects pairs of appro
priate units from each of the reduced resolution spaces 
to appropriate R-units. The conjunctive connection 
represents the intersection of each of its components" 
fields. Essentially the sa~e mechanism will suffice for 
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Fipre 16 Inputs at A & B cause ghosts at C & D. 

conjoining (e.g.) accurate color with coarse velocity 
information. 

An important limitation of these techniques, how
ever, is that the input must be sparse. If inputs are too 
closely spaced. "ghost" firings will occur. In Figure 16, 
two sets of overlapping fields are shown, each with 
unilaterally reduced resolution. Actual input at points 
A and 8 will produce an erroneous indication of an 
input at C, in addition to the correct signals. The 
sparseness requirement has been shown to be satisfied 

• 

in a number of experiments with visual data ( Ballard • 
& Kimball, 1981 a, 198 lb; Ballard & Sabbah. 1981 ). 

The resolution device involves a units/connections 
tradeotT, but in general. the tradeotTis attractive. To see 
this, consider a unit that receives input from a network 
representing a vector parameter v. If n is the number 
of places where the output is used, and conjunctive 
connections are used to conjoin the D tiring units, 
then On synapses are required. Thus if A is the number 
of non-coarse coded units to achieve a given acuity, 
then coarse coding is attractive when Aiot-i > Dn. 
assuming connections and units arc equally scarce. 
This result is optimistic in that. when other uses of con
junctive connections arc taken into account. the num
ber of conjunctive units could be unrealistically large. 

TuniDI 
The idea of tuning further exploits networks composed 
of coarsely- and finely-grained units. Suppose there are 
n fine resolution units of a feature A and n tine resolu
tions for a feature 8. To have explicit units for feature 
values AB, n2 units would be required. This is an 
untenable solution for large feature spaces I the number 
of units grows exponentially with the number of fea· 
turcs), so alternatives must be sought. One solution to 
this problem is to vary the grain orthe AB units so that 
they are only coarsely represented. This solution has • 
its attendant disadvantages in that separate stimuli 
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within the limits of the coarse resolution grain cannot 
be distinguished. Also. a set of weak stimuli can be 
misinterpreted. A better solutibn is to have a coarse 
unit that would respond only to a single saturated unit 
within its input range. In that way a collection of weak 
inputs is not misinterpreted. 

This situation can be achieved by having the units 
in each finely-tuned network that are in the field of a 
coarse unit laterally inhibiteach other, e.g., in the WT A 
network of Figure Sa. The outputs of these individual 
feature units then form disjunctive connections with 
appropriate coarse resolution multiple feature units. If 
m is the grain of the coarse resolution units along with 
each feature dimension. the number of disjunctions per 
coarse unit is (n/m)2• The result of this connection 
strategy is that a coarse unit responds with a strength 
that varies as the strengths of the largest maximum in 
the subnetwork of each of the finely-tuned units that 
correspond to its field. The response of a coarse-tuned 
unit is the maximum of the sums of the conjunctive 
inputs from the finely tuned units which connect to it. 
In terms of Figure l.S, a tuned coarse-angle cell would 
respond only to one high-confidence pair of angles in 
its range, and not to several weak ones (which couldn't 
correctly appear all at one position). This is a better 
property than just having unstructured coarse units 
and it will be exploited in the next section, when we 
deal with perceiving complex objects. 

Spatial Coherence 
The most serious problem which requires conserving 
connections is the representation of complex concepts. 
The obvious way of representin1 concepts (sets of 
properties) is to dedicate a separate unit to each con
junction of features. In fact, it first appears that one 
would need a separate unit for each combination at 
each location in the visual field. We will present here 
a simple way around the problem of separate units for 
each location and deal with the more pncral problem 
in the next section. 

The basic problem can be readily seen in the example 
of Figure 17. Suppose there were one unit each for 
finally recognizin1 concepts like colored circles and 
squares. Now consider the case when a red circle (at 
it = 7) and a blue square (at x • 11) simultaneously 
appear in the visual field. If the various "colored figure" 
units simply summed their inputs, the incorrect "blue 
circle" unit would sec two active inputs, just like the 
correct "red circle" and "blue square" units. This prob
lem is known as cross-talk, and is always a potential 
hazard in CM networks. The solution presented in 
Figure 17 is quite general. Each unit is assumed to 
have a separate conjunctive connection site for each 

Fi1an 17 Spatial coherence on inputs can represent complex 
concepts without cross-talk. Solid lines show active inputs and 
dashed lines (some or the) inactive inputs. 

position of the visual field. In our example. the correct 
units get dual inputs to a single site (and are activated) 
while the partially matched units receive separated 
inputs and are not activated. Only sets of properties 
which are spatially coherent can serve to activate 
concept units. This example was meant to show how 
spatial coherence could be used with conjunctive con
nections to eliminate cross-talk. There are a number of 
additional ways of using spatial coherence, each of 
which involves different tradeoffs. These arc discussed 
in the next section. which considers some sample 
applications in more detail. 

5. AppUcatiom 

This section illustrates the power of the CM paradigm 
via two groups of examples. The first shows how the 
various techniques for conserving connections can be 
used in an idealized form of perception of a compleit 
object. Here the point is that an object has multjple 
features which are computed in parallel via the trans
form methodology. The second group of examples 
starts with a relatively simple problem, that of vcrgencc 
eye movements, to illustrate motor control using value 
units. In this example, control is immediate; a visual 
signal produces an instantaneous output (within the 
settling time constants of the units). Extensions of this 
idea use space as a buffer for time. For motor out
put. space allows the incoporation of more complcit 
motor commands. For speech input, spatial buffering 
allows for phoneme recognition based on subsequent 
information. 



500 
Chapter 29 

These examples were chosen to show that CM can 
provide a unified representation for both perception 
and motor contr~l. This is important since an animal 
is hardly ever passively responding to its environment. 
Instead. it seems involved in what Arbib has called 
a perception-action cycle (Arbib, 1979). Perceptions 
result in actions which in tum cause new perceptions, 
and so on. Massive parallelism changes the way the 
perception-action cycle is viewed. In the traditional 
view, one would convert the input to a language which 
uses variables, and then use these variables to direct 
motor commands. CM suggests that we think of ac
complishing the same actions via a transformation: 
sensory input is transformed (connected to) to abstract 
representational units, which in tum are transformed 
(connected to) to motor units. This will obviously work 
for reflex actions. The examples are intended to suggest 
how more flexible command and control structures 
can also be represented by systems of value units. 

Object Recopidoll 
The examples of Figures 1 and 6 are representative of 
the problem of gestalt perception: that of seeing parts 
of an image as a single percept (object). An "object" 
is indicated by the .. simultaneous" appearance of a 
number of 'visual features" in the correct relative 
spatial positions. In any realistic case, this will in
volve a variety of features at several different levels of 
abstraction and complex interaction among them. A 
comprehensive model orthis process would be a proto
type theory of visual perception and is well beyond the 
scope of this paper. What we will do here is consider 
the prerequisite task or constructing CM solutions to 
the problems of detecting non-punctate visual features 
and of formin1 sets of the features which could help 
characterize a percept. We will refer throughout to the 
prototype problem of detectin1 Fred's frisbee, which is 
known to be round. baby-blue, and moving fairly fast. 
The development suppresses many important issues 
such as hierarchical descriptions, perspective. occlu
sion, and the intearation or separate fixations. not to 
mention learnin1- A brief discussion of how these might 
be tackled follows the technical material. 

The fint problem is to develop a general CM tech
nique for detecting features and properties of images, 
given that these features are not usually detectable at 
a single point in some retinotopic map. The basic idea 
is to find parameters which characterize the feature in 
question and connect each retinotopic detector to the 
parameter values consistent with its detcctand. 

Consider the problem of detecting lines in an image 
from short edge segments. Different lines can be repre
sented by units having different discrete parameter 

values. e.g. in the line equation p = x cos IJ + v sin IJ. A 
parameters are p and 9. Thus edge units at (x. y. 1) coP 
be connected to appropriate line units. ~ote that this 
example is analogous to the word recognition example 
(Fig. 1). Edges are analogous to letters and lines to 
words. As in the words-letter example ... top-down" 
connections allow the existence of a line to raise the 
confidence of a local edge. In our line detection exam
ple, lines in the image are high potential (confidence) 
units in a slope-intercept (9, p) parameter space. High 
confidence edge units produce high confidence line 
units by virtue of the newtork connectivity. This general 
way of describing this relationship between parts of an 
image (e.g., edges) and the associated parameters (e.g., 
p, 9 for a line) is a conncctionist interpretation of 
the Hough transform (Duda & Hart. 1972). Since each 
parameter value is determined by a large number of 
inputs, the method is inherently noise-resistant and 
was invented for this purpose. A Hough transform 
network for circles (like Fred's frisbee) would involve 
one parameter for size plus two for spatial location. 
and exactly this method has been used for tumor 
detection in chest radiographs (Kimme et al., 1975). 
Notice that the circle parameter space is itself retino
topic in that the centen of circles have specified loca
tions; this will be important in registering mul. 
features. 

The Hough transform is a formalism for specifying 
excitatory links between units. The general require
ments are that part of an image representation can be 
represented by a parameter vector a in an image space 
A and a feature can be represented by a vector b which 
is an element of a feature space 8. Physical constraints 
f (a. b) • 0 relate a and b. The space A represents spa
tially indexed units, and each individual element at is 
only consistent with certain elements in the space B. 
owing to the constraint imposed by the relation f. Thus 
for each •• it is impossible to compute the set 

Bt • [bla, and f(a,,bl SC,,.} 

where a. is the set of units in the feau.ue space network 
8 that the •• unit must connect to. and the constant c5i, 
is related to the quantization in the space 8. Let H(bl 
be the number of active connections the value unit b 
receives from units in A. H(b) is the number of image 
measurements which are consistent with the parameter 
value b. The potential of units in Bis given by p(b) -
H(b)/1:11 H(b). The value p(b) can stand for the confi
dence that segment with feature value b is present in 
the image. If the measurement represented by a is 
realized as groups of units, e.g .• a = (a 1 • a!). then con
junctive connections are required to implemen. 
constraint relation. 



• 

• 

• 

501 
Feldman and Ballard 1982 

Implementing these networks often results in a set 
of very sparsely distributed high-confidence feature 
space units. In implementa,ions of the line detection 
example, only approximately l~{ of the units have 
maximum confidence values. This figure is also typical 
of other modalities. In general, each •• and the rela
tionship f will not determine a single unit in Bt as 
in the line detection example, but there still will be 
isolated high-confidence units. Figure l shows why this 
is the case: different •• letter-feature units connect to 
common units in the letter space B. 

We have found that parameter spaces combine with 
the growing body of knowledge on specific physical 
constraints to provide a powerful and robust model 
for the simultaneous computation of invariant object 
properties such as reflectance, curvature, and relative 
motion (Ballard. 1981). 

Of course segmentation must involve ways of as
sociating peaks in several different feature spaces and 
methods for doing this are discussed presently, but the 
cornerstone of the techniques are high-confidence units 
in the individual-modality feature spaces. In extending 
the single feature case to multiple features, the most 
serious problem is the immense size of the cross prod
uct of the spatial dimensions with those of interesting 
features such as color, velocity, and texture. Thus to 
explain how image-like input such as color and optical 
flow are related to abstract objects such as "a blue, 
fast-moving thing,'' it becomes necessary to use all the 
techniques of the previous sections. 

Even if we assume that there is a special unit for 
recognizing images of Fred's frisbee, it cannot be the 
case that there is a separate one of these units for each 
point in the visual field. One weak solution to this kind 
of problem was given in Figure 17 of the last section. 
There could conceivably be a separate 3-way conjunc
tive connection on the Fred's frisbee unit for each 
position in space. Activation of one conjunct would 
require the simultaneous activation of circle, baby
blue, and fairly-fast in the same part of the visual field. 
The solution style with separate conjunctions for every 
point in space becomes increasingly implausible as we 
consider more complex objects with hierarchical and 
multiple descriptions. The spatially registered con
junctions would have to be preserved throughout the 
structure. 

The problem of going from a set of descriptors 
(features) to the object which is the best match to the 
set is known in artificial intelligence as the indexing 
problem. The feature set is viewed as an index (as in a 
data base). There have been several proposed parallel 
hierarchical network solutions to the indexing prob· 
lem (Fahlman., 1979; Hillis, 1981) and these can be 
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Fls-e II Spatial rocus unit can gate only input from attended 
positions. 

mapped into CM terms. But these designs assume that 
the network is presented with sets of descriptors which 
are already partitioned; precisely the vision problem 
we arc trying to solve. There are three additional 
mechanisms that seem to be necessary, two of which 
have already been discussed. Coarse coding and tuning 
(as discussed in Section 4) make it much less costly 
to represent conjunctions. In addition, some general 
concepts (e.g., blue frisbee) might be indexed more 
efficiently through less precise units. The new idea is an 
extension of spatial coherence that exploits the fact 
that the networks respond to activity that occurs to· 
gether in time. If there were a way to focus the activity 
of the network on one area at a time, only properties 
detected in that area would compete to index objects. 

The obvious way to focus attention on one area of 
the visual field is with eye movements, but there is 
evidence that focus can also be done within a fixation. 
The general idea of internal spatial focus is shown in 
Figure 18. In this network, the general "baby-blue" 
unit is configured to have separate conjunctive inputs 
for each point in space, like the blue-square units of 
Figure 17. The difference is that the second input. to the 
conjunction comes from a "focus" unit, and this makes 
a much more general network. The idea of making a 
unit (e.g., baby blue) more responsive to inputs from a 
given spatial position can be implemented in different 
ways. The conjunctive connection at the x = 7 lobe 
of the baby-blue unit is the most direct way. But treat· 
ing this conjunct as a strict AND would mean that all 
spatial units would have to be active when there was 
no focus. An alternative would be to have the "focus 
on 7" unit boost the output of the "baby blue at T' 
unit (and all of its rivals) as shown by the dashed 
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line: this would eliminate the need for separate spatial 
conjunctions on the ba~y-blue unit, but would alter the 
potential of all the unitf at the position being attended. 
The trade-offs become even trickier when goal-directed 
input is taken into account, but both methods have the 
same effect on indexing. If the system has its attention 
directed only to x = 7, then the only feature units 
activated at all will be those whose local representa· 
tives are dominant (in their WT A) at x = 7. In such a 
case, there would be a time when the only concept units 
active in the entire network would be those for x =- 7. 
This does not "solve" the problem ofidentifying objects 
in a visual scene, but it does suggest that sequen
tially focusing attention on separate places can help 
significantly. There is considerable reason to suppose 
( Posner, 1978; Triesman, 1980) that people do this even 
in tasks without eye movement. 

There are other ways of lookin1 at the network of 
Figure 18. Suppose the system bad reason to focus on 
some particular property (c.1-. baby-blue~ If we make 
bi-directional the links from '1ocus on x • 7" to "baby
bluc" and "baby-blue at 7," a nice possibility arises. 
The "focus on 7" unit could have a conjunctive connec
tion for each separate property at its position. If, for 
example, baby-blue was chosen for focus and was the 
dominant color at x = 7, then the "focus on x • 7" unit 
would dominate its rivals. This suggests another way 
in which the recognition of complex objects could be 
helped by spatial focus. Figure 19 depicts the fairly 
general situation. 

In Figure 19, the units representing baby-blue, cir
cular, and fairly-fast are assumed to be for the entire 
visual field and moderately precise. The dotted arrows 
to the "Fred's frisbee" node sugest that there might 
be more levels of description in a realistic system. The 
spatial focus links involving baby-blue are the same as 
in Figure 18, and are replicated for the other two 
properties. Notice that the position-specific sensing 
units do not have their potentials affected by spatial 
focus units. so that the sensed data can remain intact. 
The network of Figure 19 can be used in several ways. 

If attention has been focused on x - 7 for any 
reason. the various space-independent units whose 
representatives are most active at x • 7 will become 
most active, presumably leadin1 to the activation (rec
ognition) of Fred's frisbee. If a top-down goal of 
looking for Fred's frisbee (or even just something baby
blue) is active, then the "focus on x • 7" will tend to 
defeat its WT A rivals, leadin1 to the same result. A 
third possibility is a little more complicated. but quite 
powerful Suppose that a given image. even in context. 
activates too many property units so that no objects 
arc effectively indexed. One stratclY would be to syste-
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matically scan each area of the visual field, eliminating 
confounding activity from other areas. But it is also 
possible to be more efficient. If some property unit (say 
baby-blue) were strongly activated, the network could 
focus attention on all the positions with that property. 

• 

In this case it is like putting a baby-blue filter in • 
front of the scene, and should often lead to better 
convergence in the networks for shape, speed. etc. 

One should compare the network of Figure 17 with 
Figures 18 and 19. In the former, parallel co-existing 
concepts are possible if we assume delicate arrange
ments of conjunctive connections. The latter networks 
are more robust but use sequentiality to eliminate 
cross-talk. 

Time and Sequence 
Conncctionist models do not initially appear to be 
well-suited to representing changes with time. The 
network for computing some function can be made 
quite fast, but it will be fixed in functionality. There 
are two quite different aspects of time variability of 
connectionist structures. One is time-varyi(1g responses. 
i.e .. long-term modification of the networks ( through 
changing weights) and short-term changes in the be· 
havior of a fixed network with time. The second 
aspect is sequence: the problem of analyzing inherently 
sequential output (such as speech) or producing in· 
herently sequential output (such as motor commands) 
with parallel models. The problem of change will be 
deferred to(Feldman, 1981b). The problem of sequence 
is discussed here. 

There arc a number of biologically suggested me· • 
chanisms for chansin1 the weight (wi) of synaptic 
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connections, but none of them are nearly rapid enough 
to account for our ability to hear, read, or speak. The 
ability to perceive a time-varying signal like speech 
or to intearate the images from successive fixations 
must be achieved (according to our dogma) by some 
dynamic (electrical) activity in the networks. As usual, 
we will present computational solutions to the prob
lems of sequence that appear to be consistent with 
known structural and performance constraints. These 
are, again, too crude to be taken literally but do 
suggest that connectionist models can describe the 
phenomena. 

Motor Control of the Eye To see how the transform 
notion of distributed units might work for motor con
trol, we present a simplistic model of vergence eye 
movements. (The same idea may be valid for fixations, 
but control probably takes place at higher levels of 
abstraction.) In this model retinotopic (spatial) units 
are connected directly to muscle control units. Each 
retinotopic unit can if saturated cause the appropriate 
contraction so that the new eye position is centered on 
that unit. When several retinotopic units saturate, each 
enables a muscle control unit independently and the 
muscle itself contracts an averap amount. 

Figure 20 shows the idea for a one-dimensional 
retina. For example, with units at positions 2. 4, 5, and 
6 saturated, the net result is that the muscle is centered 
at 17 /4 or 4.25. (This idea can be extended to the case 
where the retinotopic units have overlappina fields.) 
This kind or organization could be extended to more 
complex movement models such as that of the organi
zation of the superior colliculus in the monkey (Wurtz 
& Albano, 1980). 

Notice that each retinotopic unit is capable of enabl
ing different muscle control units. The appropriate 

one is determined by the enabled x-origin unit which 
inhibits commands to the inappropriate control units 
via modifiers. 

One problem with this simple network arises when 
disparate groups ofretinotopic units are saturated. The 
present configuration can send the eye to an average 
position if the features are truly identical. The newtork 
can be modified with additional connections so that 
only a single connected component of saturated units 
is enabled by using additional object primitives. A 
version of this WTA motor control idea has already 
been used in a computer model of the frog tectum 
(Didday, 1976). 

There are still many details to be worked out before 
this could be considered a realistic model of vergence 
control. but it does illustrate the basic idea: local 
spatially separate sensors have distinct, active connec
tions which could be averaged at the muscle for fine 
motor control or be fed to some intermediate network 
for the control of more complex behaviors. 

Convfftina Space to Time Consider the problem of 
controllina a simple physical motion. such as throw
ina a ball. It .is not hard to imagine that in a skilled 
motor performance unit-aroups fire each other in a 
fixed succession, leading to the motor sequence. The 
computational problem is that there is a unique set of 
effector units (say at the spinal level) that must receive 
input from each aroup at the rignt time. Figure 2ta 
depicts a simple case in which there are two effector 
units (e 1 , e2 ) that must be activated alternatively. The 
circles marked 1-4 represent units (or groups of units) 
which activate their successor and inhibit their pre
decessor (cf. Delcomyn, 1980). The main point is that 
a succession of outputs to a single effector set can 
be modeled as a sequence of time-exclusive groups 
representing instantaneous coordinate signals. Moving 
from one time step to the next could be controlled 
by pure timing for ballistic movements, or by a pro
prioceptive feedback signal. There is. of course. an 
enormous amount more than this to motor control 
and realistic models would have to model force.control: 
ballistic movements, gravity compensation. etc. 

The second part of Figure 21 depicts a somewhat 
fanciful notion or how a variety of output sequences 
could share a collection of lower level response units. 
The network shown has a single "Dixie" unit which 
can start a sequence and which joins in conjunctive 
connections with each note to specify its successor. At 
each time step, a WT A network decides what note gets 
sounded. One can imagine adding the rhythm network 
and transposition networks to other keys and to other 
modalities of output 

-----------------------------------------------
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Coa•ertina nme to Space The sequencer model for 
skilled movements was greatly simplified by the as
sumption that the sequence of activities was pre-wired. 
How could one (still crudely, of course) model a situa
tion like speech perception where there is a largely 
unpredictable time-varyin1 computation to be carried 
out? One solution is to combine the sequencer model 
of Figure 21 with a simple vision-like scheme. We 
assume that speech is recognized by bein1 sequenced 
into a buffer of about the lenath of a phrase and then 
is relaxed against context in the way described above 
for vision. For simplicity, assume that there arc two 
identical buft'ers, each havin1 a pervasive modifier (m1) 

innervation so that either one can be switched into or 
out of its connections. We are particularly concerned 
with the process of goin1 from a sequence of potential 
phonetic features into an interpreted phrase. Figure 22 
gives an idea of how this mipt happen. 

Assume that there is a separate unit for each poten
tial feature for each time step up to the length of the 
buffer. The network which analyzes sound is connected 
identically to each column. but conjunction allows 
only the connections to the active column to transmit 
values. Under ideal circumstances. at each time step 

,,,,, .. 
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exactly one feature unit would be active. A phrase 
would then be laid out on the butTer like an image on 
the .. mind's eye," and the analogous kind of relaxation 
cones (cf. Figure l. 6) involving morphemes. words, 
etc .• could be broupt to bear. The more realistic case 
where sounds are locally ambiguous presents no addi
tional problems. We assume that. at each time step. 
the various competing features get varying activation. 
Diphone constraints could be captured by ( + or - ) 
links to the next column as suggested by Figure 22. The 
result is a multiple possibility relaxation problcm
again exactly like that in visual perception. The fact 
that each potential feature could be assigned a row of 
units is essential to this solution; we do not know how 
to make an analogous model for a sequence of sounds 
which cannot be clearly categorized and combined. 
Recall that the purpose of this example is to indicate 
how time-varying input could be treated in connec
tionist models. The problem of actually· laying out 
detailed models for language skills is enormous and 
our example may or may not be useful in its current 
form. Some of the considerations that arise in distri
buted modeling of language skills arc presented in 
Arbib and Caplan. ( 1979). 

Conclmiolll 

• 

• 

The CM paradigm advanced in this paper has been 
applied successfully only to relatively low-level tasks .• 
There is no reason. as yet, to be confident that an 
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intennediate symbolic representation will not be re
quired for modeling higher cognitive processes. There is. 
however, the beginning of a~ollection of efforts which 
can be interpreted as attempting CM approaches to 
higher level tasks. These include work which explicitly 
uses parallelism in planning (Stefik, 1981) and deduc
tion. and work which incorporates more connectionist 
architectural notions ofvalue units (Forbus, 1981) and 
coarse coding (Garvey, 1981). 

We have now completed six yean of intensive effort 
on the development of connectionist models and their 
application to the description of complex tasks. While 
we have only touched the surface, the results to data 
are very encouraging. Somewhat to our surprise, we 
have yet to encounter a challenge to the basic for· 
mulation. Our attempts to model in detail particular 
computations (Ballard & Sabbah. 1981; Sabbah. 1981) 
have led to a number of new insights (for us, at least) 
into these specific tasks. Attempts like this one to 
formulate and solve general computational problems 
in realistic connectionist terms have proven to be 
difficult, but less so than we would have guessed. 
There appear to be a number of interesting technical 
problems within the theory and a wide range of ques· 
tions about brains and behavior which might benefit 
from an approach along the lines suggested in this 
paper. 

Appendix: Summary of Deflaitiom and Notadoll 

A unit is a computational entity comprising: 

{q}-a set of discrete states. < 10 

p-a continuous value in [ -10, 10], called potential 
(accuracy of several digits) 

v-an output value, integcn O s v s 9 

i-a vector of inputs i1, ••• , i,. 

and functions from old to new values of these 

p+- f(i,p,q) 

q ... g(i,p.q) 
v ... h(i,p,q) 

which we assume to compute continuously. The form 
of the f, g, and h functions will vary, but will generally 
be restricted to conditionals and simple functions. 

P-Units 
F_or some applications, we will use a particularly simple 
kind of unit whose output v is proportional to its 
potential p (rounded) (when p > 0) and which has only 
one state. In other words 

P ... P + P l:w•i• (0 :;.;; wt :;_;; I) 
v ... if P > 8 the" round (p - 0) else O [v = O ... 9) 

where /3, (} are constants and w. are weights on the input 
values. 

Conjunctive Connections 
In terms of our formalism, this could be described in a 
variety of ways. One of the simplest is to define the 
potential in terms of the maximum, e.g., 

p +- p + fJ Max(i 1 + i2 - cp, i3 + i4 - cp, i, + i6 - i, - cp) 

where f3 is a scale constant as in the p-unit and <P is a 
constant chosen (usually > 10) to suppress noise and 
require the presence of multiple active inputs. The 
minus sign associated with i7 corresponds to its being 
an inhibitory inpuL The max-of-sum unit is the con
tinuous analog of a logical OR-of-AND (disjunctive 
normal form) unit and we will sometimes use the latter 
as an approximate version of the former. The OR-of· 
AND unit corresponding to the above is: 

P +- p + ci OR (i 1 &i2, i3&i4 , i5 &i6 &(not i7)) 

Winner-take-all (WTA) networks have the property 
that only the one with the highest potential (among a 
set of contenden) will have output above zero after 
some settling time. 

A coaUtioll will be called stable when the output of 
all of its memben is non-decreasing. 

Cha nae 
For our purposes, it is useful to have all the adapt· 
ability of networks be confined to changes in weights. 
While there is known to be some growth of new 
connections in adults. it does not appear to be fast 
or extensive enough to play a major role in learning. 
For technical reasons, we consider very local growth 
or decay of connections to be changes in existing 
connection patterns. Obviously, models concerned with 
developing systems would need a richer notion of 
change in connectionist networks (cf. von der Mals· 
burg & Willshaw, 1977). We provide each unit.with a 
memory vector µ which can be updated: 

µ ... c(i, p,q,x, w,µ) 

where µ is the intermediate-term memory vector, w is 
the weight vector, i, p, and q are as always, and x is 
an additional single integer intput (0 s x s; I) which 
captures the notion of the importance and value of 
the current behavior. Instantaneous establishment of 
long-term memory imprinting would be equivalent to 
having µ • w. The assumption is that the consolida· 
tion of long-term changes is a separate process. 

·--------------------~~-----------------~~ 
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We postulate that important. favorable or unfavor
able, behaviors can ~ve rise to faster learning. The 
rationale for this is ,ven in (Feldman, 1980, 198la), 
which also lays out· infonnally our views on how 
short- and long-tenn learning could occur in connec
tionist networks. A detailed technical discussion of 
this material. along the lines of this paper, is presented 
in .(Feldman. 198lb). Obviously enough, a plausible 
model ofleaming and memory is a prerequisite for any 
serious scientific use of connectionism. 
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